Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(5): 897-926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994298

RESUMO

In Saccharomyces cerevisiae, the CBC-Tif4631p-dependent exosomal targeting (CTEXT) complex consisting of Cbc1/2p, Tif4631p and Upf3p promotes the exosomal degradation of aberrantly long 3'-extended, export-defective transcripts and a small group of normal (termed 'special') mRNAs. We carried out a systematic analysis of all previously characterized functional domains of the major CTEXT component Tif4631p by deleting each of them and interrogating their involvement in the nuclear surveillance of abnormally long 3'-extended and export-defective messages. Our analyses show that the N-terminal RNA recognition motif 1 (RRM1) and poly(A)-binding protein (PAB) domains of Tif4631p, spanning amino acid residues, 1-82 and 188-299 in its primary structure, respectively, play a crucial role in degrading these aberrant messages. Furthermore, the physical association of the nuclear exosome with the altered/variant CTEXT complex harboring any of the mutant Tif4631p proteins lacking either the RRM1 or PAB domain becomes abolished. This finding indicates that the association between CTEXT and the exosome is accomplished via interaction between these Tif4631p domains with the major exosome component, Rrp6p. Abolition of interaction between altered CTEXT (harboring any of the RRM1/PAB-deleted versions of Tif4631p) and the exosome further leads to the impaired recruitment of the RNA targets to the Rrp6p subunit of the exosome carried out by the RRM1/PAB domains of Tif4631p. When analyzing the Tif4631p-interacting proteins, we identified a DEAD-box RNA helicase (Dbp2p), as an interacting partner that turned out to be a previously unknown component of CTEXT. The present study provides a more complete description of the CTEXT complex and offers insight into the functional relationship of this complex with the nuclear exosome.


Assuntos
Motivo de Reconhecimento de RNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo
2.
Neuron ; 110(8): 1277-1280, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35447096

RESUMO

Usage of alternative mRNA 3' ends has profound functional consequences, particularly in the nervous system. In this issue of Neuron, LaForce et al. (2022) dissect the effect of CLP1 on mRNA 3' end diversity in motor neuron models of neurodegeneration.


Assuntos
Neurônios Motores , Transcrição Gênica , RNA Mensageiro/genética
3.
J Mol Biol ; 430(14): 1993-2013, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758258

RESUMO

Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.


Assuntos
Núcleo Celular/genética , Mutação , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Exossomos/genética , Humanos , Especificidade de Órgãos , Estudos Prospectivos , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
FEMS Yeast Res ; 14(6): 922-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041160

RESUMO

Messenger RNAs retained in the nucleus of Saccharomyces cerevisiae are subjected to a degradation system designated DRN (Degradation of mRNA in the Nucleus) that is dependent on the nuclear mRNA cap-binding protein, Cbc1p, as well as nuclear exosome component Rrp6p, a 3' to 5' exoribonuclease. DRN has been shown to act on RNAs preferentially retained in the nucleus, such as: (1) global mRNAs in export defective nup116-Δ mutant strains at the restrictive temperature; (2) a certain class of normal mRNAs called special mRNAs (e.g. IMP3 and YLR194c mRNAs); and (3) mutant mRNAs for example, lys2-187 and cyc1-512. In this study, we further identify three novel components of DRN (Cbc2p, Upf3p and Tif4631p) by employing a genetic screen and by considering proteins/factors that interact with Cbc1p. Participation of these components in DRN was confirmed by demonstrating that null alleles of these genes resulted in stabilization of the rapid decay of global mRNAs in the export defective nup116-Δ strain and of representative special mRNAs. Depletion of Tif4632p, an isoform of Tif4631p, also exhibited a partial impairment of DRN function and is therefore also considered to play a functional role in DRN. These findings clearly establish that CBC2, UPF3, and TIF4631/32 gene products participate in DRN function.


Assuntos
Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Genótipo , Mutação , Ligação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...